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Analysis and Visualization of Discrete Fracture
Networks Using a Flow Topology Graph

Garrett Aldrich1,2, Jeffrey D. Hyman3,4, Satish Karra3, Carl W. Gable3,
Nataliia Makedonska3, Hari Viswanathan3, Jonathan Woodring2, and Bernd Hamann1

Abstract—We present an analysis and visualization prototype using the concept of a flow topology graph (FTG) for characterization of
flow in constrained networks, with a focus on discrete fracture networks (DFN), developed collaboratively by geoscientists and
visualization scientists. Our method allows users to understand and evaluate flow and transport in DFN simulations by computing
statistical distributions, segment paths of interest, and cluster particles based on their paths. The new approach enables domain
scientists to evaluate the accuracy of the simulations, visualize features of interest, and compare multiple realizations over a specific
domain of interest. Geoscientists can simulate complex transport phenomena modeling large sites for networks consisting of several
thousand fractures without compromising the geometry of the network. However, few tools exist for performing higher-level analysis
and visualization of simulated DFN data. The prototype system we present addresses this need. We demonstrate its effectiveness for
increasingly complex examples of DFNs, covering two distinct use cases – hydrocarbon extraction from unconventional resources and
transport of dissolved contaminant from a spent nuclear fuel repository.

Index Terms—Network Flow Analysis and Visualization, Flow Topology Graph, Topological Path Analysis, Topological Trace
Clustering, Flow in Fractured Rock, Discrete Fracture Network

F

1 INTRODUCTION

W E present a method for the analysis and visualization
of constrained flow networks driven by applications

in computational simulation of fluid flow and transport
in fractured rock. Determining how subsurface fractures
control flow and transport has various applications in en-
gineering and scientific endeavors including hydrocarbon
extraction, aquifer storage and management, geothermal
energy extraction, environmental restoration of fractured
rock contaminated sites and the disposal of spent nuclear
fuel [1], [2], [3]. Figure 2 shows a caricature of flow and
transport in fractured porous media.

Discrete fracture networks (DFN) are one methodology
that computational subsurface scientists use to simulate
fluid transport within such fracture networks. Although
DFN models were introduced over two decades ago, they
are fairly novel to the visualization community. The need for
this collaboration between the visualization researchers and
geoscientists is the result of recent developments in the DFN
community where three-dimensional fracture networks con-
sisting of tens of thousands of fractures are now common.
Accumulating local and global transport statistics such as
the distribution of traversal times, velocities, and tortuosity
of advected particles is not terribly difficult, but the analysis
of these flow features and determining their relation to
properties of the simulation domain is a demanding task.
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The large amount of data resulting from these physics based
simulations has created a need for advanced analysis and
visualizations techniques to more efficiently process and in-
terpret model outputs. Our team has addressed this need by
developing, implementing, and testing a new visualization
workflow.

We identified three areas of analysis research needed by
geoscientists concerned with flow and transport in fractured
media: statistical analysis, topological path analysis, and
topological trace clustering. Figure 1 shows an outline of the
methodology we developed, which is described in this pa-
per, to address these needs. Using particle trajectories in the
DFN (Left) we build a flow topology graph (FTG) (Center
Top) that embeds information about transport through the
fracture network into a graph. This representation enables
us to develop and use graph analytics based algorithms,
which combine feature and statistical analysis, to analyze
the simulation output. The analysis results are stored in the
FTG and are used to generate geometry files and statistical
plots which can be explored by the user (Right). Using this
information, we evaluate and refine the FTG analysis to
investigate specific features of flow and transport through
each DFN (Center Bottom). Embedding analysis from the
FTG directly into geometry files for the DFN allows for
integration of the FTG data with standard visualization
tools. Furthermore, these tools allow for the identification
of backbones in the DFN, which are connected subsets of
fractures on which a majority of flow and transport occurs.

The key contributions of this methodology development
are:

• Advanced visualization for the analysis of fluid
transport in DFN simulations.

• The direct transformation of the simulation results
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Fig. 1. Overview of our analysis and visualization methodology. (Left) Transport through a discrete fracture network (DFN) is simulated using particle
advection through a steady-state flow field. (Center Top) Pathlines obtained in the transport simulation are used to construct a flow topology graph
(FTG) that embeds flow and transport information into a graph. (Right) Analysis of the FTG using statistics, graph theory, and topological clustering
provides detailed information about various features of interest. Using this information, we can evaluate and refine the FTG analysis to investigate
specific features of flow and transport through each DFN (Center Bottom).

to a flow topology graph (FTG) with one-to-one
correspondence with DFN geometry.

• A novel graph analysis algorithm for detecting back-
bone paths on FTG.

• A new algorithm for clustering particle trajectories
based their path topology that can be used to identify
and quantify flow channeling within the DFN.

In section 2, we motivate the need for these DFN analysis
methods, provide a summary of relevant previous work,
and briefly describe the DFN methodology. In section 3, we
define the flow topology graph (FTG), the cornerstone of
our analysis framework, and describe how it is constructed
using transport simulations on a DFN. In section 4, we
describe FTG based algorithms we developed for DFN anal-
ysis. In section 5, we demonstrate the effectiveness of these
methods by applying them to several fracture networks that
vary in terms of size and number of fractures. The least
complex is a synthetic network consisting of two hundred
fractures and the most complex is based on actual site data
and contains about five thousand fractures. We provide
conclusions in section 6, where limitations and future work
are also discussed.

2 MOTIVATION AND BACKGROUND

Our primary goal is to create a robust methodology to ana-
lyze and visualize flow and transport in three-dimensional
DFN models using advective Lagrangian particle-tracking.
To accomplish this goal, it is necessary to have a flexible and
scalable workflow because DFN vary greatly in domain size
and fracture density. Statistical analysis is used to identify
potential problems in the simulation and allows for bet-
ter understanding of system-wide trends. Topological path
analysis allows for the identification of important regions
within the network. Specifically for DFN simulations, we
want to identify backbones in the fracture network. We
define a backbone as a connected subset of fractures in the
network on which a substantial portion of flow and trans-
port occurs; a DFN can have multiple backbones. Finally,

Fig. 2. A caricature of a two-dimensional fracture network embedded
within impermeable rock. Fractures are the principal pathway for flow
and transport through low-permeability rocks in the subsurface. Beyond
the difficulties associated with determining flow and transport within
such networks, efficient and effective ways for the analysis of the data
sets produced via such simulations are still lacking. Existing general
data analysis and visualization methods must be specialized for the
needs of particle tracking through fracture network data.

topological trace clustering is used to identify groups of
particles that travel along similar paths. These clusters pro-
vide insight into transport phenomenon, such as clustering
and flow channeling, within the DFN and are used as a
verification of backbones.

2.1 Related Work
Flow and transport in DFN is a new application in the visu-
alization community – Laramee et al. [4], Salzbrunn et al. [5],
and Pobitzer et al. [6] produced state-of-the-art reports that
provide a good overall background. These references focus
on the general analysis of flow fields and particle traces
including topological analysis, feature selection, and stream-
line segmentation. In general, our problem can be posed
as studying flow and transport in a constrained network.
While the analysis goals were different, Jones and Ma [7]
address a similar application by visualizing fluid particle
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trajectories in porous media that are not constrained by
fracture geometry. They used a warped curvature plot of the
trajectories to allow the user to select particle traces of inter-
est, and then visualize those trajectories while emphasizing
local geometry. Another similar application is using fiber
tracking to define topologically salient regions in diffusion
tensor MRI data of the brain, which can be thought of as a
constrained network flow problem [8], [9].

An increasingly common technique for analyzing flow,
one that we use in this work, is to generate a graph struc-
ture derived from advected particles in a flow field. Xu
and Shen. [10] built a graph structure, the flow web, by
segmenting a flow field with a regular grid and building
a graph from the connections made by advected particles
in the field. They allow users to query the graph directly
through a visual representation. This allows selected paths
in the graph to be visualized as segmented streamlines in the
flow field. Nouanesengsy [11] and C. M. Chen [12] used this
graph structure to facilitate load balancing during parallel
processing of very large flow fields. In contrast to these
works we use the explicit network topology of a DFN to
define our graph, which is then used for automated feature
analysis and clustering. Flow graphs have also been defined
from the topological properties of a vector field itself. For
example, G. Chen et al. analyze flow by generating the
Morse connection graph from the Morse decomposition of
flow fields [13], [14], [15].

Clustering particle traces or other integral curves is a
common method for dealing with occlusion and empha-
sizing flow behavior for a system. Similarities in stream-
line shape or geometric features are commonly used for
clustering. McLoughlin et al. [16] introduced an efficient
and interactive method for identifying similar streamlines
by their curvature, torsion, and tortuosity. Yu et al. [17]
used spatial and geometric data to cluster streamlines. Lu
et al. [18] used these properties to define statistical distribu-
tions for streamline and combine querying with clustering
for analysis. Wei et al [19] used a model-based clustering
method for finding similarity in particle trajectories from
turbulent combustion data to demonstrate the relationship
between phase and physical space. They used a two-stage
clustering algorithm. In the first stage, time series curves are
clustered automatically, and then a user is able to update the
clustering in a second pass after exploring the automated
results.

2.2 Discrete Fracture Networks

DFN modeling is one approach to simulate flow and trans-
port through low-permeability fractured rocks, such as shale
or granite, in the subsurface. In this approach, geologic
field investigations are used to create a network of fractures
where the geometry and properties of individual fractures
are explicitly represented as lines in two dimensions and
planar polygons in three dimensions. Fractures in the net-
work are assigned a shape, location, aperture, and orien-
tation based on distributions determined by a geological
survey. Once a network is constructed, the individual frac-
tures are meshed for computation and the flow equations
are numerically integrated on the resulting computational
mesh. For a more detailed explanation of various DFN

(a) (b)

(c) (d)

Fig. 3. DFN flow and transport example. This DFN is made up of ten
interconnected fractures within a 103 meter domain. (a) The conforming
Delaunay mesh overlaid on the fractures. (b) A steady-state pressure
field in the network. Flow is primarily in the vertical direction. (c) The
pressure solution is used to compute the fluid velocity field on each
fracture. (d) Particles are inserted along fracture edges at the top of
the domain. Particle trajectories define path-lines in the flow solution
and identify where transport occurs in the system. Path-lines here are
colored by transit time.

methodologies and their applications see [20], [21], [22], [23],
[24], [25].

Figure 3 shows our workflow for simulating transport
in a DFN. The DFNWORKS [26] computational suite is
used to generate each DFN and resolve flow and transport
therein. Each DFN is constructed using the feature rejection
algorithm for meshing (FRAM) [27]. Then a conforming
Delaunay triangulation, whose dual Voronoi mesh can then
be used as the control volume for finite volume solvers, is
created using the LAGRIT meshing toolkit [28], Figure 3 (a).
The massively parallel flow solver PFLOTRAN [29] is then
used to determine the steady-state pressure field for the
DFN, Figure 3 (b). Darcy’s law and the local pressure
field are then used to reconstruct the local velocity field,
Figure 3 (c), which is used to track particles through the
domain [30], [31], Figure 3 (d). In the next section we
describe our method for constructing a FTG using these
particle trajectories, referred to as traces.

3 THE FLOW TOPOLOGY GRAPH

The flow topology graph (FTG) is a direct abstraction of flow
and transport constrained to a discrete fracture network.
We define the FTG for simulated particle transport on DFN
using path traces in conjunction with the fracture network
topology. Specifically, each fracture is represented by an in-
dividual vertex in the graph and edges represent the discrete
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Fig. 4. The flow topology graph (FTG) derived from the transport sim-
ulation shown in Figure 3 (d). In the FTG each fracture polygon is
represented by a vertex in the graph. Each edge represents particles
that travel between two fractures over an intersection. We also add a
”SOURCE” and ”SINK” node (at the far left and right respectively) to the
FTG from which all particles enter and exit.

intersections where particles can transport from one fracture
to another. The FTG encapsulates information of particles
traversing the network, which have local driving forces
incorporated. Therefore, these driving forces, e.g., gravity
and local pressure gradient determine the topological order
and are implicitly included in the graph.

Formally, for a DFN with N fractures (Fi : i = 1, . . . , N )
and K particles (Pj : j = 1, . . . ,K) we build a FTG using
the following algorithm. First, we create N vertices Vi : i =
1, . . . , N , each corresponding to an Fi. We include source
(Vsource) and sink ( Vsink) vertices that represent the global
entry and exit into the system for particles. Each trace path
(Rj) contains an ordered set of fracture polygons that are
visited by Pj . For every entry fracture, the first fracture Fu

in every trace path Rj , we create an edge from Vsource to
Vu. Similarly for every exit fracture, the final fracture Fw

in every Rj , we create an edge from Vw to Vsink . Each
time a particle transitions from one fracture, Fu, to another,
Fw i.e., there are ordered pairs (Fu, Fw) in Rj , we create
an edge from Vu to Vw. Multiple edges directed from the
same vertices are merged, so at most a single directed edge
exists from any vertex Vu to any Vw. For each vertex Vi
we append a pointer to every particle, Pj , that traverses
the fracture polygon, Fi. A pointer to every particle that
traverses an intersection between two fractures is also added
to the associated edge. Table 1 summarizes our notation for
reference.

Figure 4 shows the FTG for transport in the ten fracture
networks shown in Figure 3 (d) where the fracture IDs and
colormap show the correspondence to graph vertices. For
the purpose of this example, we lay out the vertices by

Symbol Description

Fi Fracture number i in a DFN
Vi Vertex in the FTG, Vi represents fracture Fi

Pj Particle j transported on a DFN
|Pi| Total number of particles which travel on Fi

Rj Ordered set of fractures particle Pi traverses
Ei The minimum number of fractures a particle would

have to traverse to exit the DFN from Fi

Si The minimum number of fractures a particle would
have to traverse to enter Fi

Lj The path length of the trace for Pj

Cj The net displacement of Pj

Tj The tortuosity of the trace for Pj

T̄ i The mean tortuosity of all particles starting at Fi

until they exit the DFN

TABLE 1
Reference table of symbols used to define the flow topology graph for

discrete fracture networks.

their topological distance from the source (left most vertex)
and sink (right most vertex), such that columns of vertices
have the same topological distance. It is important to note
that this layout is used for the purposes of this paper, and
does not scale to large DFN. We do not currently directly
visualize the graph as part of our analysis framework.
Directed edges between vertices indicate that at least one
particle passed between the corresponding fractures in the
direction indicated by the edge.

One benefit of the FTG is that adding information about
the specific flow network, model geometry, and transport
statistics to vertices in the network is straightforward. The
first particle based attribute we append to the vertices is
the number of particles that pass through each fracture.
Another is the topological distance to the exit, Ei, which is
the minimum number of fractures a particle must traverse
before exiting the network from Fi. We also calculate the
topological distance from the source, Si, which is the min-
imum number of fractures a particle must traverse before
entering Fi. We derive per-vertex and per-edge statistics
for the particles that traverse the associated fracture and
fracture intersections respectively. For example, we compute
of the tortuosity of each trajectory (the ratio between the
path length of a trace and the net displacement of the
particle) which measures the deviation of a trajectory from
the straight line between its edge points. Formally, we define
the fracture tortuosity, T i

j , of a particle Pj for fracture Fi as:

T i
j = Li

j/C
i
j ,

where Li
j is the length of the trace of Pj starting from the

point it enters fracture Fi until it exits the DFN. Similarly
Ci

j is the Euclidean distance from the two end points taken
over the same interval. Tortuosity can be defined multiple
ways, but this definition is adequate for our purposes.

4 ANALYSIS AND VISUALIZATION OF DFN
Using the FTG representation, we provide a workflow that
produces three types of analysis products for DFN, namely
statistical analysis, path analysis, and topological cluster-
ing. Statistical analysis can be used for debugging and to
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compare multiple fracture networks based on the same
geological distributions to address questions of ergodicity
and resolve global and local trends in the flow field. Path
analysis allows us to use a Lagrangian viewpoint to find
features in the flow field and link them to the fracture
geometry. One key feature of interest within a DFN are
backbones, which are connected subsets of fractures on
which a majority of flow and transport occur. Backbones are
believed to be responsible for flow channelization in frac-
tured media, where flow is concentrated in certain regions
of fractured rock, and have been qualitatively identified [23],
[32]. In this section, we provided a systematic methodology
to identify them using the FTG. We describe a method of
topological clustering to group particles which take similar
paths through the network. This clustering allows us to
better visualize and segment particle traces as well as verify
backbones defined using path analysis.

4.1 Statistical Analysis

The construction of each DFN is stochastic, relying on
randomly sampling known distributions of fracture size,
orientation, aperture and shape; multiple realizations of a
given site must therefore be created. Statistical analysis can
be used to verify that an ensemble of fracture networks with
different topologies, but modeling the same formation of
rock, produce similar results. Sampling constraints in both
time and space limit what experiment data can be obtained
in the field; local measurements of key phenomena are not
possible throughout a site. Therefore, upscaled quantities,
are used for verification of flow and transport simulations at
site specific locations. Statistical analysis can also be used to
compare transport behavior on selected sets of fractures or
paths (such as backbones) to global transport for the system.

By appending fracture and intersection attributes as
well as statistics to the FTG for a transport simulation,
we can readily accumulate global statistics for a single
DFN, a local subset of the DFN, or multiple realizations.
While global statistics are important for comparison be-
tween transport simulations, localized statistics taken from
a subset of the network are useful for characterizing specific
flow attributes. For example, the user can segment the parts
of the network that are never reached by particles, find
the set of fractures responsible for the fastest or slowest
transport times, or segment the DFN into topological layers
by finding all fractures where particles must travel through
at least N fractures before entering.

Several attributes are stored in the FTG that are of
interest to the domain experts analyzing the transport sim-
ulations of a DFN. Per-fracture attributes include the size;
topological distances (Ei, Si); the number of transported
particles (|Pi|); and mean fracture tortuosity (T̄ i). For each
particle, we store both per-fracture and total transport time,
path length, velocity, and particle tortuosity (Tj). For these
integral values, we are also interested in how they change
as particles traverse the network. To accomplish this investi-
gation, we parameterize the derived values for each particle
over time, trace-path length, and topological distance. For
example, in Figure 5 the tortuosity is shown for all particles
in a simulation that uses the DFN shown in Figure 3. In the
top plot of Figure 5, the maximum path length for all particle
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Fig. 5. Plots of statistical qualities from a transport simulation in a DFN
made up of ten fractures. Around 150 particles are advected through the
DFN to produce these statistics. (Top) A blue heat map represents the
two-dimensional histogram of tortuosity values sampled at discrete path
lengths along particle traces (blue gradient), as well as the mean curve
(green). The particle occupancy, or number of particles in the system
at each sampled point is also shown in magenta. The coarseness of
the plot is due to the simplistic nature of our example. (Bottom) Particle
tortuosity distribution are sampled over topological distance indicating
that as particles reach fractures closer to the exit, they take more direct,
less tortuous, paths.

trajectories is calculated Lmax, and then divided evenly by
the number of sample points. We parameterize each trajec-
tory and sample the tortuosity starting at these points along
the curve, discarding trajectories that have a shorter overall
path length than the sample point. The result is a two-
dimensional histogram, which we display as a heat map,
in shades of blue. In addition, the mean tortuosity curve is
plotted in green, and the number of particles sampled at that
point (the occupancy) is plotted in magenta. When plotting
the results we add a negative value to the distances that
indicates the path length to the exit, as apposed to from the
source. We can interpret from these plots that the farther a
particle travels through the DFN, the more direct its path
towards the exit becomes. In the bottom plot, the change in
fracture tortuosity over topological distance to the exit, Ei,
is shown. This parameterization is necessarily much coarser,
and the number of fractures at each distance is given for
reference. From this graph we show that fractures closer to
the DFN exit, provide a more direct path.

Most often the statistical data is displayed by producing
plots and graphs, however we also allow the user to directly
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Fig. 6. Path analysis in the flow topology graph enables the extraction
of features within the flow network such backbones. These backbones
form where a significant portion of flow becomes channelized. The path
is highlighted on the original geometry of the discrete fracture network
as well as being represented by the FTG.

visualize these distributions on the original geometry. For
large DFN, rendering the entire network using a colormap
to identify attributes is less useful, due to occlusion. How-
ever, this method of visualization is still relevant when
applied to meaningful subsets of the DFN.

4.2 Path Analysis

Flow channeling and fast paths through fractured media
lead to non-Fickian (anomalous transport) [3], [33]. Geo-
scientists and hydrologists are interested in characterizing
the features of a fracture network that result in these flow
charachteristics. Within the context of DFN simulations, we
are specifically interested in identifying paths in the FTG,
connected sets of fractures, where the local flow magnitude
is significantly above the network average. We refer to these
connected sets of fractures as backbones because they act
as the primary transport path through the network. For a
candidate path to be a backbone it must meet the following
criteria: (i) Backbones carry a large percentage of the local-
ized flow, (ii) Particles near or on a backbone should remain
on that path rather than dispersing throughout the network,
and (iii) Backbones are be composed of a relatively small
number of fractures that provide a direct path towards an
outlet. If candidate paths meet these requirements, then they
will be independently verified using the particle clustering
algorithm discussed in section 4.3. Clustering of particles is
indicative of flow channeling and allow one to determine
whether or not a path is a backbone. A DFN may have
multiple backbones and backbones in a network are not
unique, e.g., they may depend on the imposed principal
direction of flow [33]. Backbones have been qualitatively
identified in DFN simulations as discussed in the hydrology

literature [23], [32]. In this subsection, we provide a data-
driven algorithm based on trace-path analysis to identify
and characterize backbones.

To extract candidate paths we consider these three crite-
ria on the FTG representation of the DFN. Then the problem
becomes equivalent to extracting shortest paths from the
FTG. Figure 6 shows an example of a channelized path ex-
tracted from the FTG and the resulting set of fractures which
represent that path in the DFN. This reduction requires us
to define edge weights such that a path corresponds to a
candidate backbone when it has been extracted as a shortest
path. We have tested several edge weights and obtained the
best results with the following:

W1(ei,j) = T̄ j , (1)

W2(ei,j) = T̄ j ∗
√
Ej , (2)

W3(ei,j) = −|Pj |, (3)

In (1) each edge, ei,j , is weighted by the mean fracture
tortuosity, T̄ j , for the fracture represented by vertex j in
the FTG. Lower fracture tortuosity implies that particles
traveling along that fracture exit the system using a rel-
atively straight path. We derive this metric from the fact
that particles that are not on a backbone tend to disperse
throughout the network, while particles on a backbone
remain on it and exhibit a straighter trajectory. The second
function, (2), combines (1) with the topological distance
term, Ej , so that fractures which are closer to the exit have
a lower weight. This metric produces paths similar to those
obtained via (1), but reduces the influence of fractures that
are near the entrance to the system. This reduction accounts
for potential bias caused by initial seeding of particles that
can influence backbone detection. Often particles traverse
several fractures before traveling along a backbone path.
By reducing the influence of entry fractures, we produce
more meaningful backbones at the interior of the system.
In practice paths are extracted either using (1) or (2) but not
both, depending on a particular application and whether the
influence of initial particle location is desired or not.

In the third function, (3), weights are the negative val-
ues of the total numbers of particles traversing a fracture
pointed to by each edge. The weight is negative so that
the optimal shortest path maximizes the number of par-
ticles. While (3) defines the most obvious candidate for a
weight function, it is also the most difficult to implement.
Specially, finding the optimal path for a general FTG with
negative weights is intractable for large networks (assuming
P 6= NP ). Another consideration is ensuring that candidate
backbone paths extracted from this method are not arbitrar-
ily long, as each added fracture in the path increases the total
number of particles. We resolve both problems by reducing
the FTG into a directed acyclical graph FTGDAG, which
removes all cycles from the graph. The FTG is reduced
to FTGDAG by removing all edges where the topological
distance to the exit increases or remains the same, i.e.,
the edges of FTGDAG are the subset of edges such that
ej,k : Ej > Ek. This removes cycles (all of which would
be negative) from the graph and allows for negative edge
weights to be used. It also removes all edges that allow
particles to traverse farther from the exit in topological
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(a) (b)

Fig. 7. We use agglomerative hierarchal clustering to segment particles
which take similar topological paths through the network. For this DFN
the clustering is readily apparent, and each cluster is rendered with a
unique color. In (b) we show the largest two clusters emphasizing that
clustered particles take similar paths while traversing the DFN.

distance, which eliminates arbitrarily long paths. Extracting
paths using edge weight (3), produces candidate backbones
that have a high number of particles, on direct paths that
contain a limited number of fractures.

To account for multiple backbones in a DFN, multiple
locally optimal paths are extracted by combining two meth-
ods. First, we extract paths between the source vertex of the
FTG and every vertex representing an exit fracture where
a significant percentage of particles leave the system. This
approach is apposed to only extracting paths between the
source and sink vertex in the FTG, which would produce
a globally optimal solution. The minimum percentage of
exiting fractures is a user-defined parameter; a value of three
percent is used by default. However, the type of simulation,
the number of exit fractures, and the initial seeding of
particles all influence how this parameter is set. Second,
we use a standard implementation of Yen’s K shortest
paths algorithm [34] which produces up to K optimal
paths between two vertices in a graph. The choice for K
is application-dependent; users must take into account the
type of simulation, domain size, number of fractures, and
the sizes of those fractures. In practice a value of K = 3 is
used for most networks while K = 8 shortest paths have
been needed for very large complex DFNs. The first method
is necessary to extract multiple disjoint backbone paths,
especially when they are of varying strength. The second is
necessary for finding multiple intersecting backbones which
exit through the same fracture.

To aid users in further visual analysis of the backbone
candidates, we calculate the number of particles which
travel along each path. This indicates the relative strength
of each candidate. However, further validation is usually
necessary to ensure channelization is occurring, which can
be better shown through clustering particle traces by their
path topology.

4.3 Topological Trace Clustering

Visually differentiating large numbers of integrated paths
leads to an occlusion problem. A common approach to
resolve this issue is to compare traces using a similarity
metric and then apply a clustering algorithm to associate

them with groups in accordance with their similarity. Once
split into groups, particle traces can be visualized either
through rendering each group in a different color, by render-
ing a smaller but representative subset of the particles, or a
combination of both techniques. This allows users to better
understand the coherency between particle traces and ob-
serve trends in the flow field or network. Previous research
has focused on defining similarity metrics by properties of
the curves themselves, such as curvature [16], shape [17], or
statistical distributions [18]. However, similarity in shape or
structure of individual trajectories is less important for our
application.

We define a similarity function using network topology
in terms of the ordered set of fractures each trace traverses.
By representing the trace path of a particle using the ordered
set of fractures that it visits while traversing a DFN, and
comparing the paths each trace takes through the FTG the
similarity of traces can be readily computed. Explicitly, any
two traces that travel on the same ordered set of fractures are
considered topologically equivalent when clustering. Simi-
larly, if two particles have nearly the same trace path, deviat-
ing only slightly in the fractures they traverse, then they will
be considered to have small distance value between them.
Finally, if two particles have completely different trace paths
then they will be assigned a very large or infinite distance.

This trace distance function is inspired by the Leven-
shtein distance function for string-based comparisons [35].
The Levenshtein distance function finds the shortest edit
distance between two strings by recursively comparing
the ordered set of characters in the string and produces
the minimum number of changes needed to convert one
string into the other. The possible changes include insertion,
removal or replacement of single characters. For example,
when comparing ’skip’ and ’sip’ or ’show’ and ’slow’, the
Levenshtein distance is one in both cases (a removal and a
replacement, respectively). Wilson et al. [36] used an adap-
tation of this metric to compare spectral representations
of graphs. We have adapted this algorithm by considering
strings of fracture IDs, Fi, representing the trace paths of
particles, rather than strings of characters. For example,
a particle could have the trace path, {F1, F3, F10}, which
would indicate that it entered the DFN on fracture F1,
was transported to fracture F3 and exited the DFN through
fracture F10. A pseudocode implementation of the distance
function is given in Algorithm 1.

The major difference between our algorithm and the
original is the use of a topological cost function for making
edits; φ(i, j) in Algorithm 1. In the Levenshtein distance,
all edits are given a cost of 1, while we calculate the cost
of replacing fractures in a trace path using the topological
distance information encapsulated by the FTG. We define
the cost function for replacing a fracture, Fi with another
fracture Fj , φ(i, j), to be the number of edges in the shortest
path from vertex vi to vj in the associated FTG. In other
words, the replacement cost is represented by the mini-
mum number of fractures that would be traversed for a
particle on Fi to reach Fj . If no path exists in the FTG,
then φ(i, j) = infinity. This definition also implies that the
cost of insertion or deletion of a fracture is 1. This can
be explained as follows: if there existed two trace paths,
Ra = {Fa, Fb, Fc} and Rb = {Fa, Fc}, then the FTG
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would have to contain edges ea,b, ea,c. Therefore the cost
to either remove Fb from Ra or add it to Rb is 1, as that is
the minimum distance between the associated vertices. The
resulting algorithm uses a recursive function that returns
the minimum cost.

Algorithm 1 Trace Distance Function
Let Ra be the ordered set of fracture ids, Fi, for trace a
Let |Ra| be the number of fracture ids in Ra

Let Ra|k be the kth fracture id
Let φ(Fi,Fj) be the cost function for replacing IDs s.t.

φ(Fi,Fj) ≡ the shortest path from vi to vj in the FTG

Initially La← |Ra|
Initially Lb← |Rb|
procedure TDF(Ra,La,Rb,Lb)

if La = 0 then
return Lb

end if
if Lb = 0 then

return La
end if
if Ra|La = Rb|Lb then

RC ← 0
else

RC ← MIN(φ(Ra|La,Rb|Lb),φ(Rb|Lb,Ra|La) )
end if
return MIN(

TDF(Ra,La− 1,Rb,Lb) +1,
TDF(Ra,La,Rb,Lb− 1) +1,
TDF(Ra,La− 1,Rb,Lb− 1) +RC
)

end procedure

To identify trace clusters given their mutual distances,
we use the agglomerative hierarchical clustering (AHC)
algorithm [37]. This is one of the most commonly used
method for clustering path traces and other integral curves,
[5], [6], [16], [17], [18]. AHC builds a hierarchy by recur-
sively merging pairs of clusters (initially each trace being
its own cluster), until all clusters are merged. The resulting
hierarchy can then be ’cut’ by setting a maximum distance
value for pairs of particle traces included in the same cluster.
This gives the user control to define how similar the paths
of particles must be. In practice we choose several distances
and allow the user to select the most appropriate one during
exploratory visualization.

In Figure 7(a) we show the results of our clustering
algorithm for the ten-fracture system from section 2. Here,
each cluster is rendered in a unique color. In Figure 7(b)
we show only the two largest clusters to emphasize the
paths taken by traces in each group. In particular the largest
(yellow) cluster consists of particles that take similar, but
not the same, path through the network. We note that the
largest clusters lie primarily along the backbone path shown
in Figure 7. By grouping and then visualizing large clusters
of particles that take similar paths through the network,
users are better able to observe and differentiate areas where
channelization occurs. If a larger number of clusters is seen,
then a single representative trace of each cluster will be ren-
dered to further reduce occlusion retaining key information.

Fig. 8. Three backbones in a 200 fracture network. On the left, each path
is represented by a different color and the clustered particles traveling
along each path are represented by tubes whose colors indicate their
cluster ID. On the right, backbone fractures are colored by the mean
tortuosity of the particles traversing these fractures (fracture tortuosity).
The tortuosity values are close to one indicating that particles on the
backbones take direct paths towards the exit, rather than dispersing
throughout the network.

The representative trace is chosen at random from particles
which take the most common path in the cluster.

While our algorithm on its own performs well and
produces clusters as expected, we have included two op-
tional modifications to accommodate specific needs of DFN
simulations. First, we allow users to disregard cycles in
the fracture path by collapsing them in the trace path i.e.,
{. . . , Fa, Fb, Fc, Fd, Fb, Fe, . . .} → {. . . , Fa, Fb, Fe, . . .}. In
the context of a DFN, this corresponds to a particle that
leaves a fracture, but later then returns to it and continues
to travel therein.

The second modification accounts for potential bias due
to initial conditions. To do so, we disregard the first several
(typically 1 to 3) fractures in the trace path when computing
clusters. Disregarding the first fractures in a trace path
limits the influence that the initial seeding has on clusters
by allowing particles to initially disperse/coalesce in the
system prior to being subject to analysis. Hyman et al. [23]
observed that is took particles uniformly distributed across
an inlet plane 250 meters before they exhibited strong flow
channeling characteristics. Trimming initial fractures is an
optional step in the clustering algorithm and only useful
for certain use cases and under certain initial conditions.
However, it provides flexibility for domain experts. The
motivation behind this option is similar to the reason used
for our addition of topological distance when extracting
candidate backbone paths, cf. equation (2).

By visualizing the large clusters of particles, channel-
ization becomes more apparent. This is an important tool
for validating the candidate backbones and observing the
global behavior of the flow network.

4.4 Analysis Driven Visualization

Exploratory visualization of the analysis results produced
by our framework plays an integral role in evaluating the
results of a DFN simulation. We have chosen to decouple
visualization from the analysis process to maintain both
flexibility and interactivity. Statistical plots are produced
directly from the FTG using python scripts that generate
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Fig. 9. We produce statistical results based on the particle behavior in a 200 fracture DFN with around 500 advected particles. The scatter plot in (a)
shows the number of particles that traverse through fractures of different sizes. This image indicate that particles are well distributed over fractures
of different sizes, except for a single outlying fracture that is significantly larger than the rest on which a large portion of the transport occurs. We
calculate a series histogram for the tortuosity by sampling particles at regular intervals of time, path length (b), or mean distance and topological
distance (c).

plots either for the entire system, a subset of fractures repre-
senting candidate backbones, or sets of clustered particles.
These plots can be combined and overlaid for comparison
purposes. This is especially useful for comparing multiple
simulated data sets. While we provide predefined python-
based scripts to produce these plots, custom plots can
also be created. Direct geometric visualization is handled
through embedding analysis results directly into geometry
files for both the DFN and particle traces. The one-to-one
mapping between the FTG and DFN allows us to add per-
fracture attributes to the DFN geometry files. Similarly, the
statistical and clustering information for each particle is
added as an attribute to the trace geometry files. To allow
users to explore the results of parameter value changes, we
sample a selected parameter space and embed all of the
results into the output files. For example, when generating
clusters we select multiple minimum distances to cut the
agglomerative clustering hierarchy and allow users to select
from clusters generated at each level. The number of cuts
and minimum distance are user-defined options. By default
the mean distance between particles is used as a base.
Five subsequent cuts are also made by linearly sampling
between the mean distance and one-tenth that distance.
The candidate backbones are embedded in two different
ways, to aid users in identifying the most meaningful ones.
Paths can be selected by the method and order that they
are extracted or by the amount of flow occurring on each.
The former allows users to better understand why the
algorithm produced each candidate path and the latter gives
a more natural ordering of the candidates. Individual traces
and each fracture on a selected path retain their statistical
properties along with cluster information. This allows each
feature to be compared visually and the selections can be
used to generate plots for the subset.

The decision to decouple visualization from analysis,
rather than integrating both steps into a custom tool,
makes possible the use of many standard visualization
tools, such as the Paraview data analysis and visualiza-
tion platform [38]. Our target user group, computational
geoscientists studying flow in DFN simulations, preferred

to leverage preexisting tools that they are already famil-
iar with. By using well-maintained visualization tools, we
ensure easy use and that the analysis tools can remain
usable without support for a new software interface. Further
more, by encapsulating the analysis methods in an offline
process, large amounts of data can be processed. As the
field continues to develop, DFNs are expected to become
larger, more complex and are likely to require and increasing
number of realizations to capture properties of the stochastic
system.

We have a minimal set of requirements for visualization
tools to effectively visualize the analysis files produced by
our system. The first, and most important, is the ability to
select subsets of data by setting thresholds for embedded
attributes. This enables users to select particle traces by the
cluster they belong to or the size of the cluster, and the
particular cut in the hierarchy that the clusters are produced
from. Thresholding also allows users to select candidate
backbones by the method used and order in which they are
extracted, or by the amount of flow occurring on each path.
The second requirement is to overlay multiple geometry
files using the absolute positions of vertices. Finally, the
tool must allow users to apply colormaps to the geometry
which corresponds to embedded per-cell attributes. Other
features that we use to generate the examples provided
in this paper, though not necessarily required for analysis,
include: rendering lines as tubes of varying thickness and
assigning glyphs to represent points and vectors.

5 EXAMPLES

We demonstrate our methodology by analyzing the flow
and transport in DFN simulations at various scales. We
begin with a medium sized DFN made up of two hundred
fractures. Then we demonstrate our approach in two sub-
surface applications with networks made up of thousands of
fractures. The first of these is used to study unconventional
hydrocarbon extraction based on a shale formation in the
Tuscaloosa, Alabama. The second DFN model is loosely
based on a subset of fractures in Forsmark, Sweden (a
potential host location for spent civilian nuclear fuel). We
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Fig. 10. A model of hydrocarbon extraction via hydraulic fracturing is represented by a DFN of a cubic kilometer of shale with a horizontal well (blue
rectangular fracture in the center of the domain) and six larger fractures that represent the effects of hydraulic fracturing (blue circular fractures).
In this example, flow is driven by drawdown pressure at the well. Figure (a) shows the large clustered particles for the system. Particles are not
seeded on the back face. The large number of clusters indicate that channelization is occurring throughout the network. Backbones in the network
are shown in (b), with representative particle traces from each cluster overlaid in (c). The thickness of each tube reveals the relative number of
particles in each cluster, and the color remains consistent with the representation of these same clusters in (a).

selected these two site characterizations because they high-
light different transport scenarios. The primary direction of
flow in the hydrocarbon extraction model is radial, towards
a horizontal well at the center of the domain, while in the
DFN based on the Forsmark site, the imposed pressure
gradient drives flow in one primary direction aligned with
the Z-axis. We also use the method to compare multiple
DFN realizations based on the same statical distributions.

5.1 Two hundred fracture network

We created a medium sized DFN of two hundred circular
and rectangular fractures constrained to a 12 meter cubed
domain. This network is used to demonstrate how the
combination of statistical and visualization analysis allows
us to characterize transport behavior for DFN. A pressure
gradient is applied along the X-direction to create flow
through the network and about 500 particles are used to
simulate fluid transport.

Figure 8 shows three backbones identified in the network
along with particle trajectories. Backbones are large frac-
tures aligned with principal direction of flow. The backbone
along the bottom of the domain, colored purple, is primarily
a single large fracture while the other two are composed
of several fractures. On the left, each path is represented
by a different color and the clustered particles traveling
along each path are represented by tubes whose colors
indicate their cluster ID. On the right, fractures are colored
by the mean tortuosity of particles on those fractures. The
tortuosity values are close to one, indicating that particles
traveling on these paths take a direct path towards the exit
rather than dispersing into the rest of the network.

Figure 9 shows various particle based observables. Fig-
ure 9(a) shows a scatter plot of particle density as a function
of relation to the fracture area and reveals that a large
percentage of transport in the network occurs on a single
large fracture. Fracture radii are determined by sampling a
power law distribution so there are a lot of small fractures
and few large ones. There are a disproportionate number

of particles on the largest fracture(s) when compared to
the number of large fractures. Figure 9(b) shows particle
tortuosity and occupancy as a function of particle length
from the exit plane, sampled at discrete points along particle
traces. Most particles travel between 15 and 25 meters as
they traverse the network; recall that minimum distance
to traverse the cube is 12 meters. The tortuosity values
indicate that most particles take a relatively direct path
through the network. This is further emphasized by the
graph in Figure 9(c), which relates fracture tortuosity and
the topological distance of each fracture from the exit. The
graph also shows that the majority of particles travel along
seven fractures or less and that after each transition to a new
fracture their path becomes more direct towards the exit.

5.2 Hydrocarbon extraction from unconventional re-
sources
The process of hydraulic fracturing (fracking) involves in-
jecting water at high pressures to create an interconnected
network of fractures in an otherwise impermeably rock
formation. This process increases the permeability of a low-
permeability media, such as tight shales, allowing trapped
hydrocarbons to be extracted. Using the methods of Karra
et al., [24] we generate a DFN in a cubic kilometer domain
based on surveys of a shale site in the upper Pottsville
formation in Alabama; details of the site can be found in
[39]. A horizontal well is included in the domain along
with six equally spaced fractures that represent hydrauli-
cally generated fractures that are perpendicular to the well.
Operational values for permeability, pressure, and porosity
were used for realism. Particles representing packets of gas
are seeded uniformly through out the DFN. Pumping at the
well pulls particles from throughout the network to the well.

Figure 10(a) shows the hydraulic fractures, semi-
transparent blue, the horizontal well, the rectangular plane
in the center of the domain, and clusters of particle trajecto-
ries. The color of each trace corresponds to the cluster each
belongs to. Figure 10(b) shows the backbones of the net-
work, in white and grey, along with the hydraulic fractures,
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Fig. 11. (a) A DFN realization based on the fractured granite at the
Forsmark site in Sweden. The domain is a cubic kilometer and contains
approximately five thousand circular fractures whose radii are sampled
from a truncated power-law distribution. The fractures highlighted or-
ange indicate that these fracture have not been visited by any par-
ticle during the transport simulation. (b) The backbones of the DFN
along with the three largest trace clusters colored by there cluster ID.
The backbones are primarily comprised of larger fractures that act as
conduits for flow and transport through the network, as shown by the
clustering of traces.

shown in blue. To extract backbones for this network, we use
a much lower percentage (0.5% as apposed to 3%) of exiting
particles when considering the exit fractures. The reason
such a small percentage is used for this DFN is that we
wanted to capture any channelization that was occurring,
but did not exit through one of the 6 large hydraulically
generated fractures (circular and shown in blue for this
figure). In this example there are several small backbone
structures most of which, (all but four) connect to the
hydraulically generated fractures before exiting through the
well. These connections corroborate the empirical knowl-
edge that fracking increases connectivity in the shale for-
mation thereby making it easier for trapped hydrocarbons
in low permeable shale to be extracted. Backbones and a
representative trace from each cluster are plotted together
in Figure 10(c). The thickness of each tube corresponds the
number of particles in each cluster. The colors are consistent
with (a). The representative traces primarily travel on the
backbones indicating that clustering and flow channeling
occurs on the backbones.

5.3 Kilometer DFN of fractured granite

The Swedish Nuclear Fuel and Waste Management Com-
pany (SKB) has undertaken a detailed investigation of the
fractured granite at the Forsmark site, Sweden as a potential
host formation for a subsurface repository for spent nuclear
fuel [40]. We adopt a semi-generic subset of the statisti-
cal fracture model determined by SKB, details of the site
characterization are provided in [40]. Our fracture model
uses three fracture sets whose radii are determined by a
truncated power-law distribution and varying orientations.
The largest fractures have a radius of 560 meters and the
smallest have a radius of 15 meters. An example network
is shown in Figure 11 (a). The domain is a cubic kilometer
and each realization contains approximately five thousand
circular fractures. The fractures colored orange are not vis-
ited by a particle during the transport simulation; only 30%

of fractures in the domain are touched by a particle during
transport simulations. These results indicate that the strong
flow channeling is occurring along backbones in the DFN.
Figure 11 (b) shows the backbones of the network along with
the largest particle clusters for verification. The backbones
are made up of large fractures and the particle trajectories
tend to arrive on a fracture in a backbone and remain then
remain along that path.

5.4 Network Comparison

DFN are generated stochastically and thus multiple realiza-
tions using the same underlaying statistics are required and
these multiple DFN are compared to one another. This type
of comparative analysis is desirable when trying to demon-
strate ergodic behavior in upscaled transport distributions.
For example, identifying universal fracture characteristics
that lead to flow channeling, which is equivalent to particle
clustering, requires numerous realizations. To demonstrate
the utility of the proposed methodology in this regard, we
compare networks generated using the same underlaying
statistics. Comparisons between the networks are performed
both visually and analytically to identify features and clus-
ters in the networks.

Three independent DFN realizations based on the Fors-
mark site are created and the backbone of each network
is determined, shown in Figure 12 (a-c). In the first and
third realization, there is one large fracture that dominates
transport through the system. In the second realization,
shown in the middle, the backbone is made up of numerous
medium sized fractures rather than a single large fracture.
The methodology allows us to characterize and identify the
key fracture characteristics that lead to flow channeling. One
possible use of this methodology is to identify the char-
acteristics of the fractures that make up the backbone and
then create reduced DFN models that retain these backbones
but omit fractures that do not significantly contribute to
transport.

Figure 13 shows the particle tortuosity and percent occu-
pancy of particles for the three DFN realizations. Although
the backbones are different, particle ensemble statistics ap-
pear to have stabilized. Observed tortuosity values all scale
linearly with path length to exit and little variability is
observed between realizations. However, there are discrep-
ancies in the observed cumulative distributions of percent
of occupancy. Most notable, at large distances from the
exit plane. One realization has fewer particles with long
distances from the exit plane, and this is likely the result
of the large fracture that dominants the backbone of DFN,
cf. Figure 12 (a). In general, we can use such statistical com-
parisons to ensure that any given realization of the network
topology is equally valid. If there are major discrepancies
between networks, we can use the feature analysis and
clustering to determine where these differences stem from.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a flow topology graph method for
the analysis of flow and transport in fractured rock that
allows users to analyze simulated flow and transport in
discrete fracture networks. Recent advancements in DFN
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(a) (b) (c)

Fig. 12. The backbones in three realizations of the DFN network topology, all modeling the same physical domain of the Forsmark repository site.
Each network has different types of main backbones. This type of comparison, between DFN modeling the same physical site, is important due to
the stochastic nature in which DFN are produced.
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Fig. 13. Particle tortuosity and percent occupancy of particles for the
DFN used in Figure 12, which are generated by sampling the same
fracture statistics. Similarities and differences in the curves can be
explained by the backbone structures developed in each realization.

simulation tools have made it possible to model and sim-
ulate flow at realistic scales with networks containing thou-
sands of fractures. The methods presented here are part
of a prototype system and toolset supporting the interac-
tive, detailed exploration of simulated Lagrangian transport
data.The methodology is both modular and flexible, allow-
ing for rapid prototyping and modification of capabilities
with changing goals and application needs. Visualization
is decoupled from analysis, allowing users to interactively
explore the results using tools they are familiar with.

Our FTG-based framework supports both global and
localized statistical analysis, feature analysis for discovering
channelization due to backbones, and intuitive clustering of
particle paths in these large fracture networks. The method-
ology addresses the three main areas of analysis research
identified by geoscientists concerned with flow and trans-
port in fractured media: statistical analysis, topological path
analysis, and topological trace clustering. The provided sta-
tistical analysis can be used to gain a better understanding

of system-wide trends as well as identify potential problems
in the simulation. The topological path analysis allows for
the identification of important regions within the network,
namely backbones, and allows for a systematic, integrative
approach to identifying fracture characteristics that lead to
flow channeling in fractured rock. The topological trace clus-
tering identifies groups of particles that travel along similar
paths and verify backbones. In combination, these tools can
be used to identify geological structures that dictate flow
and transport in the fractured rock. This characterization
can potentially be utilized in the modeling of both static
and adaptive control of subsurface processes, being relevant
for areas including carbon sequestration, geothermal energy,
contamination remediation, and unconventional oil and gas
extraction.

While the results demonstrated with our prototype sys-
tem are promising, it is important to note that more de-
tailed case studies are needed to evaluate results more
conclusively. More research needs to be done concerning
the establishment of better metrics for improved path anal-
ysis, topological trace clustering, and comparative analysis.
We have identified several metrics that produce reasonable
results, and we currently allow a user to select what set of
metrics to use. More studies are needed to determine which
ones are most meaningful for a given DFN application. This
aspect is especially relevant when performing comparative
analysis, where a proper metric for measuring similarities
and differences between multiple realizations of a DFN is
crucially important (ensemble simulation and analysis). We
do not currently directly visualize the graph as part of
our analysis framework. However, developing a scalable
algorithm for laying out the graph, especially for quickly
comparing between multiple FTG, is the focus of ongoing
research. Allowing users to directly interact with the FTG,
and highlight features that may be difficult to describe al-
gorithmically is also a future goal. Similarly, directly linking
statistical plots with the geometry in a painting and linking
style will be considered for future systems. This would
require a more customized system, and thus some flexibility
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in the visualizing tools would be lost, however the benefit
may outweigh the cost. Currently our prototype system is
used for performing data analysis in a post-processing step.
Considering the increasing size and complexity of simulated
DFNs, we will consider in situ use of our analyses. We
have kept this goal in mind during the development of our
prototype to minimize the amount of implementation that
will need to be done when transitioning our system from a
post-processing to an in situ analysis system.
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